Abstract
Let G be a simple algebraic group over an algebraically closed field k and let C1,…,Ct be non-central conjugacy classes in G. In this paper, we consider the problem of determining whether there exist gi∈Ci such that 〈g1,…,gt〉 is Zariski dense in G. First we establish a general result, which shows that if Ω is an irreducible subvariety of Gt, then the set of tuples in Ω generating a dense subgroup of G is either empty or dense in Ω. In the special case Ω=C1×⋯×Ct, by considering the dimensions of fixed point spaces, we prove that this set is dense when G is an exceptional algebraic group and t⩾5, assuming k is not algebraic over a finite field. In fact, for G=G2 we only need t⩾4 and both of these bounds are best possible. As an application, we show that many faithful representations of exceptional algebraic groups are generically free. We also establish new results on the topological generation of exceptional groups in the special case t=2, which have applications to random generation of finite exceptional groups of Lie type. In particular, we prove a conjecture of Liebeck and Shalev on the random (r,s)-generation of exceptional groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.