Wheatgrass is a valuable source of nutrients and phytochemicals with therapeutic properties. However, its shorter life span makes it unavailable for use. So, storage-stable products must be developed through processing in order to enhance its availability. Drying is a very important part of the processing of wheatgrass. Thus, in this study, the effect of fluidized bed drying on the proximate, antioxidant, and functional properties of wheatgrass was investigated. The wheatgrass was dried in a fluidized bed drier at different temperatures (50, 55, 60, 65, 70 °C) using a constant air velocity of 1 m/s. With increasing temperature, the moisture content was reduced at a faster rate, and all drying processes took place during the falling rate period. Eight mathematical models under thin layer drying were fitted into the moisture data and were evaluated. The Page model was the most effective in explaining the drying kinetics of wheatgrass, followed by the Logarithmic model. The R2, chi-square, and root mean squared value for Page model was 0.995465-0.999292, 0.000136-0.0002, and 0.013215-0.015058, respectively. The range of effective moisture diffusivity was 1.23-2.81 × 10-10 m2/s, and the activation energy was 34.53 kJ/mol. There was no significant difference in the proximate composition of was seen at different temperatures. The total phenolic content (117.16 ± 0.41-128.53 ± 0.55 mgGAE/g), antioxidant activity (33.56 ± 0.08-37.48 ± 0.08% (DPPH), and FRAP (1.372 ± 0.001-1.617 ± 0.001 mgAAE/g) increased with the rise in temperature. A significant increase was observed in functional properties, except for the rehydration ratio, which decreased with rising temperature. The current study suggests that fluidized bed drying improves the nutritional retention of wheatgrass with good antioxidant activity and functional properties that can be used to make functional foods.