Abstract
This work studied the effect of external conditions on the drying kinetics of a thin layer of corn during convective drying. The density and the specific volume of the corn grain were reported and the desorption isotherms of the corn were determined at three temperatures and for a water activity from 0.1 to 0.9 using the static gravimetric method. Initially, a thin layer of corn about 7 mm thick with an initial moisture content of 45% (d.b) was investigated, and the external conditions were tested. Afterwards, a comparison between the experimental convective drying of a packed bed and a thin layer was performed under the same conditions. Finally, the values of equilibrium moisture contents, water activities and temperatures obtained were fitted using seven sorption models. It was found that the experimental desorption data exhibited type II behavior, according to Brunauer’s classification. The GAB model was found as the most suitable semi-empirical model which was well suited to represent the desorption equilibrium moisture content of corn kernels in the suggested ranges of temperature and water activity. It can be concluded from the entropy–enthalpy compensation theory that the desorption process of the corn kernels is controlled by the enthalpy mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.