Internal waves are crucial for understanding oceanographic parameters such as spatiotemporal distribution and energy transfer. They significantly impact ocean circulation, marine ecosystems, and offshore operations. However, studying internal waves is challenging due to their dynamic nature and the need for effective observation methods. This study investigated nonlinear internal solitary waves (ISWs) in the South China Sea using SSHa data from the SWOT satellite mission (Cycles 2 to 20). The distribution patterns and seasonal variations in ISWs were analyzed, revealing that ISWs are more frequently observed in summer while being rarely detected in winter. By combining SSHa observations with a Mode-1 vertical structure model, the isopycnal displacement, velocity fields, and energy characteristics of ISWs were reconstructed. The results show a maximum isopycnal displacement of 160 m at 400 m depth and peak kinetic energy near the surface (~2000 J/m3) and potential energy at a depth of around 300 m (~9000 J/m3). These findings highlight the vertical variability of ISWs and demonstrate the capability of SWOT data in capturing their fine-scale evolution, providing new opportunities for oceanic research and enhancing our understanding of internal waves’ impact on marine environments and ocean circulation.
Read full abstract