Plant resistant induction is considered as a promising strategy for protecting crops against extreme high temperature (HT). However, a high-throughput method to accurately estimate the capacity of plant resistance inducers (PRIs) for HT resistance has not been developed. Here, we present a simple approach using fast chlorophyll fluorescence kinetics in Arabidopsis leaf discs to assess PRI efficacy in inducing HT resistance. Both 2-amino-3-methylhexanoic acid (AMHA) and salicylic acid (SA) significantly alleviated the temperature-dependent increase in the K-peak of the OJIP curve and variations in amplitude of heat-responsive JIP-test parameters within the elevated-temperature range of 25 to 42℃. The PIABS (performance index on absorption basis) and WK (relative variable fluorescence at the K-step to the amplitude FJ - FO) as two classical heat-responsive characteristic parameters were used to produce a novel hypersensitive parameter HT sensitivity indicator, PIABS/WK (named Hs). Based on the correlation of logHs with elevated temperatures, a model for quantifying the capacity of HT-resistance induction (called Ci) by AMHA or SA was established. A three-grade classification according to the Ci value was proposed as low (0<Ci ≤ 1℃), moderate (1℃ <Ci ≤ 2℃), and high resistance (Ci > 2℃). AMHA at 1µM and SA at 100µM had Ci values of 2.49℃ and 4.09℃ in Arabidopsis plants, respectively, associated with their high level of HT resistance induction. Additionally, the EC50 derived from the relative stimulation ratio (Kc) was also introduced as a quantitative index for measuring the ability of AMHA and SA to induce HT resistance. The EC50 value of AMHA is about 0.1µM in Arabidopsis and 0.35µM in tomato, being much lower than that of SA (approximately 63µM in Arabidopsis). Thus, AMHA is a more potent plant inducer than SA. The model was validated through additional experimental evidence, demonstrating its reliability and applicability. This study provides an expeditious high-throughput method for screening promising PRI candidates.
Read full abstract