Late endocytic membrane trafficking delivers target materials and newly synthesized hydrolases into lysosomes and is critical for maintaining an efficient degradation process and cellular homoeostasis. Although some features of late endosome-lysosome trafficking have been described, the mechanisms underlying regulation of this event remain to be elucidated. Our previous studies showed that Snapin, as a SNAP25 (25 kDa synaptosome-associated protein)-binding protein, plays a critical role in priming synaptic vesicles for synchronized fusion in neurons. In the present study, we report that Snapin also associates with late endocytic membranous organelles and interacts with the late endosome-targeted SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex. Using a genetic mouse model, we further discovered that Snapin is required to maintain a proper balance of the late endocytic protein LAMP-1 (lysosome-associated membrane protein-1) and late endosomal SNARE proteins syntaxin 8 and Vti1b (vesicle transport through interaction with target SNAREs homologue 1b). Deleting the snapin gene in mice selectively led to the accumulation of these proteins in late endocytic organelles. Thus our present study suggests that Snapin serves as an important regulator of the late endocytic fusion machinery, in addition to its established role in regulating synaptic vesicle fusion.
Read full abstract