Abstract
SNAP-25 (25 kDa synaptosome-associated protein) is found in cells that release neurotransmitters and hormones, and plays a central role in the fusion of secretory vesicles with the plasma membrane. SNAP-25 has been shown to interact specifically with syntaxin 1, a 35 kDa membrane protein, to mediate the fusion process. Here, we investigated whether other known syntaxin isoforms found at the plasma membrane can serve as binding partners for SNAP-25 in vivo. In our analysis, we employed rat phaeochromocytoma PC12 cells that are often used as a model of neuronal functions. We now show that these cells contain large amounts of SNAP-25, which interacts not only with syntaxin 1, but also with ubiquitous syntaxins 2, 3 and 4. The plasma membrane syntaxins appear to occupy complementary domains at the plasma membrane. In defined reactions, the ubiquitous plasma membrane syntaxin isoforms, when in binary complexes with SNAP-25, readily bound vesicular synaptobrevin to form SDS-resistant SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complexes implicated in membrane fusion. However, vesicular synaptotagmin and cytosolic complexin, both implicated in the fusion process, exhibited differential ability to interact with the SNARE complexes formed by syntaxins 1-4, suggesting that the plasma membrane syntaxins may mediate vesicle fusion events with different properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.