In this paper, we derive solutions to the derivative nonlinear Schrödinger equation, which are associated to real and complex discrete eigenvalues of the Kaup–Newell spectral problem. These solutions are obtained by investigating double Wronskian solutions of the coupled Kaup–Newell equations and their reductions by means of bilinear method and a reduction technique. The reduced equations include the derivative nonlinear Schrödinger equation and its nonlocal version. Some obtained solutions allow not only periodic behavior, but also solitons on periodic background. Dynamics are illustrated.