The tissue kallikrein-kinin system has been postulated to play a role in blood pressure regulation. The activity of tissue kallikrein is controlled by a number of factors in vivo. Rat kallikrein-binding protein (RKBP) is a serine proteinase inhibitor which binds to and inhibits tissue kallikrein's activity in vitro. We have recently developed several hypotensive transgenic mouse lines which express human tissue kallikrein. In order to investigate the role of RKBP in blood pressure regulation, we delivered the RKBP to these transgenic mice by intramuscular injection. Expression of the RKBP was detected in skeletal muscle by reverse transcription-polymerase chain reaction and Southern blot analysis at 10, 20, 30, and 40 days post-injection. Immunoreactive RKBP levels in the muscle and serum of these mice were quantified by a RKBP-specific enzyme-linked immunosorbent assay and Western blot analysis. The levels of RKBP mRNA and immunoreactive protein were detectable at 10 days post-injection and increased significantly at 20 and 30 days. During this period, RKBP delivery significantly increased systemic blood pressure in the kallikrein transgenic mice to a level comparable to that of normotensive control mice. The RKBP and vector DNA delivery had no effect on the blood pressure of normotensive control mice. No serum antibodies to RKBP or its DNA were detected in the mice 40 days post injection. These results suggest that the increase of systemic blood pressure by RKBP delivery in these hypotensive transgenic mice may be mediated by inhibiting tissue kallikrein activity.
Read full abstract