For the Kac-Moody superalgebra associated with the loop superalgebra with values in a finite-dimensional Lie superalgebra g, we show what its quadratic Casimir element is equal to if the Casimir element for g is known (if g has an even invariant supersymmetric bilinear form). The main tool is the Wick normal form of the even quadratic Casimir operator for the Kac-Moody superalgebra associated with g; this Wick normal form is independently interesting. If g has an odd invariant supersymmetric bilinear form, then we compute the cubic Casimir element. In addition to the simple Lie superalgebras g = g(A) with a Cartan matrix A for which the Shapovalov determinant was known, we consider the Poisson Lie superalgebra poi(0|n) and the related Kac-Moody superalgebra.
Read full abstract