Global pollution stems from the degradation of plastic waste, leading to the generation of microplastics (MPs). While environmental pollutants increase the risk of developing hypertension and kidney disease, the effects of MP exposure on these conditions in children remain unclear. Resveratrol, a phenolic compound known for its antihypertensive and renoprotective properties, has gained attention as a potential nutraceutical. This study investigates the effects of resveratrol on kidney disease and hypertension induced by MP exposure in a juvenile rat model. Three-week-old male Sprague–-Dawley (SD) rats were randomly allocated into four groups (n = 8 per group): a control group, a low-dose MP group (1 mg/L), a high-dose MP group (10 mg/L), and a high-dose MP group receiving resveratrol (50 mg/L). By 9 weeks of age, MP exposure resulted in elevated blood pressure and increased creatinine levels, both of which were mitigated by resveratrol treatment. The hypertension and kidney damage induced by high-dose MP exposure were linked to oxidative stress, which resveratrol effectively prevented. Additionally, resveratrol’s protective effects against hypertension and kidney damage were associated with increased acetic acid levels, reduced renal expression of Olfr78, and decreased expression of various components of the renin-angiotensin system (RAS). Low- and high-dose MP exposure, as well as resveratrol treatment, differentially influence gut microbiota composition. Our findings suggest that targeting oxidative stress, gut microbiota, and the RAS through resveratrol holds therapeutic potential for preventing kidney disease and hypertension associated with MP exposure. However, further research is needed to translate these results into clinical applications.
Read full abstract