Abstract

BackgroundTraumatic brain injury (TBI) is a common cause of morbidity and mortality. We have previously shown that TBI with a concurrent extra-cranial injury reliably leads to post-injury suppression of the innate immune system, but the impact of this injury on the adaptive immune system is unknown. We present data showing that combined injury reduced immune response as assayed in both blood and spleen samples and that these changes parallel apoptosis in the spleen. To assess the clinical relevance of these changes, we examined lungs for spontaneous bacterial colonization. MethodsFor these studies, prepubescent (28 day old) rats were injured using a controlled cortical impact model and then 25% blood volume removal by arteriotomy, and injured animals were compared with sham injured animals. Blood and spleen samples at post-injury day 1 were incubated with or without immunostimulant and examined for IFN-γ production using an Eli-Spot assay. Spleen samples were also examined for apoptosis using Annexin V staining, and lungs were harvested and plated on blood agar to examine for spontaneous bacterial colonization. ResultsStimulations of whole blood and spleen samples with phorbol 12-myristate 13-acetate/ionomycin (PMA/I) at post-injury day 1 were associated with significant decreases in IFN-γ-positive cells/million in injured animals. Stimulation of whole blood with either PMA/I or pokeweed mitogen led to reduced tumor necrosis factor alpha production. Spleen from injured animals showed a marked increase in apoptosis. Lung samples showed a 300% increase in colonies per plate in injured animals. ConclusionsThese data suggest that the combined injury can lead to adaptive immunosuppression, and our findings further suggest a potential role for the spleen in altering leukocyte function following injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.