Abstract

Background/purposeNasal obstruction leads to oral breathing and consequently hypoxia. The purpose of this study was to determine the influence of hypoxia on inflammatory response and the effect on alveolar bone development in a rat model in which mouth breathing was induced by nasal obstruction. Materials and methodsUnilateral nasal obstruction was performed by injecting a Merocel sponge into the nasal cavity of 8-week-old Sprague Dawley (SD) rats. After 3 and 6 weeks of nasal obstruction, rats were sacrificed, the organs were weighed, and the changes in mandibular bone quality were examined by micro-computed tomography (μ-CT). The stereomicroscope was used for the morphological analysis of alveolar bone loss in response to nasal obstruction. Hematoxylin and Eosin (H&E) and immunohistochemical staining were employed to examine inflammation and bone remodeling induced by hypoxia. ResultsNasal obstruction led to a delay in overall growth and organ development. The bone mineral density (BMD) and bone volume/total volume (BV/TV) of the mandible were reduced due to nasal obstruction, and the loss of the alveolar bone was confirmed morphologically. Our nasal obstruction method was observed to be successful in inducing hypoxia along with an increase in hypoxia-inducible factor 1-alpha (HIF-α). Oral hypoxia induced by nasal obstruction increased inflammatory response, and increased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) led to bone destruction. ConclusionThis study demonstrated that nasal obstruction induced mouth breathing led to hypoxia in a rat model. Under hypoxic conditions, an increase in osteoclast differentiation induced by activation of the inflammatory pathway causes destructive changes in the alveolar bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.