A shape invariant nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction, first studied by Cannata, Ioffe, and Nishnianidze, is re-examined with the purpose of exhibiting its hidden algebraic structure. The two operators $A^+$ and $A^-$, coming from the shape invariant supersymmetrical approach, where $A^+$ acts as a raising operator while $A^-$ annihilates all wavefunctions, are completed by introducing a novel pair of operators $B^+$ and $B^-$, where $B^-$ acts as the missing lowering operator. These four operators then serve as building blocks for constructing ${\mathfrak{gl}}(2)$ generators, acting within the set of associated functions belonging to the Jordan block corresponding to a given energy eigenvalue. This analysis is extended to the set of Jordan blocks by constructing two pairs of bosonic operators, finally yielding an ${\mathfrak{sp}}(4)$ algebra, as well as an ${\mathfrak{osp}}(1/4)$ superalgebra. Hence, the hidden algebraic structure of the model is very similar to that known for the two-dimensional real harmonic oscillator.