Abstract

We contribute to the classification of Hopf algebras with finite Gelfand-Kirillov dimension, GKdim \operatorname {GKdim} for short, through the study of Nichols algebras over abelian groups. We deal first with braided vector spaces over Z \mathbb {Z} with the generator acting as a single Jordan block and show that the corresponding Nichols algebra has finite GKdim \operatorname {GKdim} if and only if the size of the block is 2 and the eigenvalue is ± 1 \pm 1 ; when this is 1, we recover the quantum Jordan plane. We consider next a class of braided vector spaces that are direct sums of blocks and points that contains those of diagonal type. We conjecture that a Nichols algebra of diagonal type has finite GKdim \operatorname {GKdim} if and only if the corresponding generalized root system is finite. Assuming the validity of this conjecture, we classify all braided vector spaces in the mentioned class whose Nichols algebra has finite GKdim \operatorname {GKdim} . Consequently we present several new examples of Nichols algebras with finite GKdim \operatorname {GKdim} , including two not in the class alluded to above. We determine which among these Nichols algebras are domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.