Deep learning has driven research in object detection and achieved proud results. Despite its significant advancements in object detection, small object detection still struggles with low recognition rates and inaccurate positioning, primarily attributable to their miniature size. The location deviation of small objects induces severe feature misalignment, and the disequilibrium between classification and regression tasks hinders accurate recognition. To address these issues, we propose a Dynamic Feature Focusing Network (DFFN), which contains a duo of crucial modules: Visual Perception Enhancement Module (VPEM) and Task Association Module (TAM). Drawing upon the deformable convolution and attention mechanism, the VPEM concentrates on sparse key features and perceives the misalignment via positional offset. We aggregate multi-level features at identical spatial locations via layer average operation for learning a more discriminative representation. Incorporating class alignment and bounding box alignment parts, the TAM promotes classification ability, refines bounding box regression, and facilitates the joint learning of classification and localization. We conduct diverse experiments, and the proposed method considerably enhances the small object detection performance on four benchmark datasets of MS COCO, VisDrone, VOC, and TinyPerson. Our method has improved by 3.4 and 2.2 in mAP and APs, making solid improvements on COCO. Compared to other classic detection models, DFFN exhibits a high level of competitiveness in precision.