Abstract
Background and objectivePatients with glioblastoma have a five-year relative survival rate of less than 5 %. Thus, accurately predicting the overall survival (OS) of patients with glioblastoma is crucial for effective treatment planning. MethodsTo fully leverage the imaging characteristics of glioblastomas, we propose a segmentation-guided regression method for predicting OS of patients with brain tumors using multimodal magnetic resonance imaging. Specifically, a brain tumor segmentation network was first pre-trained without leveraging survival information. Subsequently, the survival regression network was jointly trained with the guidance of brain tumor segmentation, focusing on tumor voxels and suppressing irrelevant backgrounds. ResultsOur proposed framework, based on the well-known backbone of UNETR++, achieved a Dice score of 0.7910, Spearman correlation of 0.4112, and Harrell's concordance index of 0.6488. The model consistently showed promising results compared with baseline methods on two different datasets (BraTS and UCSF-PDGM). Furthermore, ablation studies on our training configurations demonstrated that both the pre-training segmentation network and contrastive loss significantly improved all metrics for OS prediction. ConclusionsIn this study, we propose a joint learning framework based on a pre-trained segmentation backbone for OS prediction by leveraging a brain tumor segmentation map. By utilizing a spatial feature map, our model can operate using a sliding-window approach, which can be adopted by varying the matrix sizes and resolutions of the input images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.