In this paper, a deep learning and expert knowledge based receiver is proposed for underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM). Different from the existing deep learning based UWA OFDM receivers, the proposed receiver combines deep learning with the classical expert knowledge of block-based signal processing in UWA OFDM to improve system performance and interpretability. It performs joint channel estimation and signal detection by designing skip connection (SC) convolutional neural network (CNN) cascaded attention mechanism (AM) enhanced bi-directional long short-term memory (BiLSTM) network, abbreviated as SC-CNN-AM-BiLSTM network (SCABNet). Specifically, the channel estimation subnet is designed with SC-CNN to utilize the thought of image super-resolution to reconstruct the entire channel frequency response of all subcarriers. The signal detection subnet is designed with AM-BiLSTM to extract the correlations of received sequential data for signal detection. Especially with the AM, the signal detection subnet can focus more on effective information of the received distorted signal to train the optimal network weights to improve the accuracy of data recovery. The proposed SCABNet is evaluated by experimental data, and the results have demonstrated that the SCABNet has the lowest BER and robust performance compared to the traditional linear algorithm, deep learning based black-box receiver, and ComNet receiver. And the proposed SCABNet is effective and robust when multiple nonideal factors co-exist.
Read full abstract