Abstract

Radar sensing will be integrated into the 6G communication system to support various applications. In this integrated sensing and communication system, a radar target may also be a communication channel scatterer. In this case, the radar and communication channels exhibit certain joint burst sparsity. We propose a two-stage joint pilot optimization, target detection and channel estimation scheme to exploit such joint burst sparsity and pilot beamforming gain to enhance detection/estimation performance. In Stage 1, the base station (BS) sends downlink pilots (DP) for initial target search, and the user sends uplink pilots (UP) for channel estimation. Then the BS performs joint target detection and channel estimation. In Stage 2, the BS exploits the prior information obtained in Stage 1 to optimize the DP signal to further refine the performance. A Turbo Sparse Bayesian inference algorithm is proposed for joint target detection and channel estimation in both stages. The pilot optimization problem in Stage 2 is a semi-definite programming with rank-1 constraints. By replacing the rank-1 constraint with a tight and smooth approximation, we propose an efficient pilot optimization algorithm based on the majorization-minimization (MM) method. Simulations verify the advantages of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.