The nanoparticle albumin bound™ (nab™) technology generally offers great potential for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions for intravenous use while avoiding solubilizers and cross-linking agents. The nab™ technology is a three-step process consisting of emulsification, high-pressure homogenization and solvent evaporation.Within this work, a screening approach was developed to predict whether active pharmaceutical ingredients are suitable for nab™ formulations. A design of experiments approach was used to investigate the effects of ultrasonic homogenization on an albumin-stabilized itraconazole nanosuspension. Based on this, a screening platform was developed, and subsequently evaluated and applied to a selection of poorly water-soluble drugs. The screening process to produce albumin-stabilized nanosuspensions consists of two process steps: Ultrasonic treatment, which combined emulsification and homogenization, followed by solvent evaporation. The results of the screening process were fully transferable to the standard three-step process of nab™ technology. In addition, based on drug screening, drug properties were highlighted that are important for the development of nab™ formulations.All in all, the nab™ technology is a promising but not universal formulation platform for poorly water-soluble drugs. Nevertheless, for some poorly soluble drugs it offers a valuable approach for the formulation of nanosuspensions for intravenous use.