• All Solutions All Solutions
    • Editage

      One platform for all researcher needs

    • Paperpal

      AI-powered academic writing assistant

    • R Discovery

      Your #1 AI companion for literature search

    • Mind the Graph

      AI tool for graphics, illustrations, and artwork

    Unlock unlimited use of all AI tools with the Editage Plus membership.

    Explore Editage Plus
  • Support All Solutions
    discovery@researcher.life
Discovery Logo
Paper
Search Paper
Cancel
Ask R Discovery
Features
  • Top Papers
  • Library
  • audio papers link Audio Papers
  • translate papers link Paper Translation
  • translate papers link Chrome Extension
Explore

Content Type

  • Preprints
  • Conference Papers
  • Journal Articles

More

  • Research Areas
  • Topics
  • Resources

Isomerization Channels Research Articles

  • Share Topic
  • Share on Facebook
  • Share on Twitter
  • Share on Mail
  • Share on SimilarCopy to clipboard
Follow Topic R Discovery
By following a topic, you will receive articles in your feed and get email alerts on round-ups.
Overview
116 Articles

Published in last 50 years

Related Topics

  • Unimolecular Decomposition
  • Unimolecular Decomposition
  • Dissociation Channels
  • Dissociation Channels

Articles published on Isomerization Channels

Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
116 Search results
Sort by
Recency
Theoretical reaction kinetics predictions for acetone and ketene with NH2 radicals: Implications on acetone/ammonia kinetic modeling

The cross-reaction kinetics of acetone/ketene (CH3COCH3/CH2CO) + amino (NH2) radicals are first theoretically reported for a wide range of conditions (T = 300–2500 K and P = 0.1–100 atm) in this work. The high-level electronic structure method CCSD(T)/cc-pVnZ(n = T, Q)//B3LYP-D3BJ/6–311++G(d,p) is used to explore the potential energy profiles on which the temperature- and pressure-dependence kinetic behaviors of the title reactions are characterized using the Rice-Ramsperger-Kassel-Marcus/Master Equation (RRKM/ME) theory. Corrections of the one-dimensional hindered rotor approximation and asymmetric Eckart tunneling effect are also included in the rate constant calculations. Furthermore, this work delves into the competitive relationships among the H-abstraction, NH2 addition and addition-dissociation reaction pathways. For CH3COCH3 + NH2, the H-abstraction reaction of CH3COCH3 is highly favored over the addition-dissociation reaction and other isomerization channels. For CH2CO + NH2, the reaction channel of addition-dissociation to form CH2NH2 + CO under low temperature conditions is more advantageous, while the H-abstraction reaction plays a dominant role under combustion conditions (T ≥ 1000 K). To reveal the impact of the studied reaction kinetics on model predictions, the rate constants of dominant reaction channels calculated in this work are incorporated into a kinetic model for the auto-ignition, oxidation and pyrolysis of CH3COCH3/NH3 mixtures. The simulated results show that the effect of the updated rate constants on ignition delay time is mainly at low temperatures and the promotion effect of CH3COCH3 addition on the ignition of NH3 presents a nonlinear enhancement. The updated rate constants can also accelerate the consumption of CH3COCH3 and CH2CO formation, while also influence the concentration distributions of other significant species (e.g., NH3, CO). Therefore, the cross-reaction kinetics of CH3COCH3/CH2CO + NH2 are critical in controlling the fuel consumption, important intermediate formation and ignition delay time of CH3COCH3/NH3 mixtures.

Read full abstract
  • Energy
  • Sep 24, 2024
  • Yiran Zhang + 3
Cite
Save

Unveiling the Reaction Mechanism of the N(2D) + Pyridine Reaction: Ring-Contraction versus 7-Membered-Ring Formation Channels.

Despite the relevance of the reactions of the prototypical nitrogen-containing six-membered aromatic molecule (N-heterocyclic) of pyridine (C6H5N) in environmental science, astrochemistry, planetary science, prebiotic chemistry, and materials science, few experimental/theoretical studies exist on the bimolecular reactions involving pyridine and neutral atomic/molecular radicals. We report a combined experimental and theoretical study on the elementary reaction of pyridine with excited nitrogen atoms, N(2D), aimed at providing information about the primary reaction products and their branching fractions (BFs). From previous crossed molecular beam (CMB) experiments with mass-spectrometric detection and present synergistic calculations of the reactive potential energy surface (PES) and product BFs we have unveiled the reaction mechanism. It is found that the reaction proceeds via N(2D) barrierless addition to pyridine that, via bridged intermediates followed by N atom "sliding" into the ring, leads to 7-membered-ring structures. They further evolve, mainly via ring-contraction mechanisms toward 5-membered-ring radical products and, to a smaller extent, via H-displacement mechanisms toward 7-membered-ring isomeric products and their isomers. Using the theoretical statistical estimates, an improved fit of the experimental data previously reported has been obtained, leading to the following results for the dominant product channels: C4H4N (pyrrolyl) + HCN (BF = 0.61 ± 0.20), C3H3N2 (1H-imidazolyl/1H-pyrazolyl) + C2H2 (BF = 0.11 ± 0.06), and C5H4N2 (7-membered-ring molecules or pyrrole carbonitriles) + H (BF = 0.28 ± 0.10). The ring-contraction product channels C4H4N (pyrrolyl) + HCN, C3H3N2 (1H-imidazolyl) + C2H2, C3H3N2 (1H-pyrazolyl) + C2H2, and C5H5 (cyclopentadienyl) + N2 have statistical BFs of 0.54, 0.09, 0.11, and 0.07, respectively. Among the H-displacement channels, the cyclic-CHCHCHCHNCN + H channel and cyclic-CHCHCHCHCN2 + H are theoretically predicted to have a comparable BF (0.07 and 0.06, respectively), while the other isomeric 7-membered-ring molecule + H channel has a BF of 0.03. Pyrrole-carbonitriles and 1H-ethynyl-1H-imidazole (+ H) isomeric channels have an overall BF of 0.03. Implications for the chemistry of Saturn's moon Titan and prebiotic chemistry, as well as for understanding the N-doping of graphene or carbon nanotubes, are noted.

Read full abstract
  • The journal of physical chemistry. A
  • Aug 14, 2024
  • Luca Mancini + 7
Cite
Save

The Unimolecular Decomposition Mechanism of Trimethyl Phosphate.

Trimethyl phosphate (TMP), an organophosphorus compound (OPC), is a promising fire-retardant candidate for lithium-ion battery (LIB) electrolytes to mitigate fire spread. This study aims to understand the mechanism of TMP unimolecular thermal decomposition to support the integration of a TMP chemical kinetic model into a LIB electrolyte surrogate model. Reactive intermediates and products of TMP thermal decomposition were experimentally detected using vacuum ultraviolet (VUV) synchrotron radiation and double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy. Phosphorus-containing intermediates such as PO, HPO and HPO2 were identified. Sampling effects could successfully be obviated thanks to photoion imaging, which also showed evidence for isomerization reactions upon wall collisions in the ionization chamber. Quantum chemical calculations performed for the unimolecular decomposition of TMP revealed for the first time that isomerization channels via hydrogen and methyl transfer (barrier heights of 65.9 and 72.6 kcal/mol, respectively) are the lowest-energy primary steps of TMP decomposition followed by CH3OH/CH3/CH2O or dimethyl ether (DME) production, respectively. We found an analogous DME production channel in the unimolecular decomposition of dimethyl methylphosphonate (DMMP), another important OPC fire-retardant additive with a similar molecular structure to TMP, which are not included in currently available chemical kinetic models.

Read full abstract
  • Chemistry (Weinheim an der Bergstrasse, Germany)
  • Aug 12, 2024
  • Keisuke Kanayama + 4
Open Access
Cite
Save

The Effect of β-Hydrogens on the Tropospheric Photochemistry of Aldehydes: Norrish Type 1, Triple Fragmentation, and Methylketene Formation from Propanal.

Wavelength and pressure dependent quantum yields (ϕ, QYs) of propanal photolysis have been measured for photolysis wavelengths, λ = 300-330 nm, and buffer gases of 3-10 Torr propanal and 0-757 Torr N2. Following laser photolysis, three photochemical pathways were established, using Fourier transform infrared spectroscopy of the stable end-products. Photolysis is dominated by the Norrish Type 1 reaction, which has been reported previously, but with inconsistent quantum yields. The propanal α-hydrogen leads to a 4-center elimination of H2, as observed in CH3CHO, here leading to methylketene. The presence of hydrogen attached to the β-carbon allows a new photochemical pathway: concerted triple fragmentation into CO + H2 + C2H4 via a 5-center transition state. Neither of these channels has been reported previously. No evidence for the previously reported C2H6 + CO, C2H4 + H2CO or CH3 + CH2CHO channels, nor for phototautomerization to 1-propenol (CH3CH═CHOH) was found. Modeling of the wavelength, pressure and collision partner dependence of the QYs allows us to reconcile the previous NT1a results and make recommendations for the quantum yields of all three channels under tropospheric conditions. The general impact of β-hydrogen atoms in the photochemistry of aldehydes is to open up new pathways from cyclic transition states and to reduce the importance of other photolysis or isomerization channels.

Read full abstract
  • Journal of the American Chemical Society
  • Jul 29, 2024
  • Alireza Kharazmi + 4
Cite
Save

Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism.

The oxidation of dimethyl sulfide (DMS) in the marine atmosphere represents an important natural source of non-sea-salt sulfate aerosol, but the chemical mechanisms underlying this process remain uncertain. While recent studies have focused on the role of the peroxy radical isomerization channel in DMS oxidation, this work revisits the impact of the other channels (OH addition and OH abstraction followed by bimolecular RO2 reaction) on aerosol formation from DMS. Due to the presence of common intermediate species, the oxidation of dimethyl sulfoxide (DMSO) and dimethyl disulfide (DMDS) can shed light on these two DMS reaction channels; they are also both atmospherically relevant species in their own right. This work examines the OH oxidation of DMSO and DMDS, using chamber experiments monitored by chemical ionization mass spectrometry and aerosol mass spectrometry to study the full range of sulfur-containing products across a range of NO concentrations. The oxidation of both compounds is found to lead to rapid aerosol formation (which does not involve the intermediate formation of SO2), with a substantial fraction (14%-47 % S yield for DMSO and 5 %-21 % for DMDS) of reacted sulfur ending up in the particle phase and the highest yields observed under elevated NO conditions. Aerosol is observed to consist mainly of sulfate, methanesulfonic acid, and methanesulfinic acid. In the gas phase, the NOx dependence of several products, including SO2 and S2-containing organosulfur species, suggest reaction pathways not included in current mechanisms. Based on the commonalities with the DMS oxidation mechanism, DMSO and DMDS results are used to reconstruct DMS aerosol yields; these reconstructions roughly match DMS aerosol yield measurements from the literature but differ in composition, underscoring remaining uncertainties in sulfur chemistry. This work indicates that both the abstraction and addition channels contribute to rapid aerosol formation from DMS and highlights the need for more study into the fate of small sulfur radical intermediates (e.g., CH3S, CH3SO2, and CH3SO3) that are thought to play central roles in the DMS oxidation mechanism.

Read full abstract
  • Atmospheric Chemistry and Physics
  • Jan 30, 2024
  • Matthew B Goss + 1
Cite
Save

A combined theoretical and experimental study of the pyrolysis of pyrrolidine

Pyrrolidine is a suitable model substance featuring a five-membered N-heterocycle representing the typical structure of the N-containing compounds in biomass. Previous studies have provided ambiguous arguments on the reaction mechanism of pyrrolidine thermal decomposition. Knowledge on the fate of the most dominant decomposition product, the unstable diradical ·CH2NHCH2·, is lacking. In this work, a high-level potential energy surface of the unimolecular reactions of ·CH2NHCH2·, including isomerization and decomposition channels, was explored. Then, the rate coefficients of various channels were obtained by the RRKM/master equation method over 500–2000 K and 0.001–100 atm. The results show that the thermal stabilization of cyc-C2H5N is highly favored over other isomerization and decomposition channels. The channels isomerizing to CH3NCH2, cis-HNCHCH3 and trans-HNCHCH3 compete with each other, and the rate constants are at least two orders of magnitude lower than the formation of cyc-C2H5N. Being thermodynamically unstable, cyc-C2H5N will mainly isomerize back into the diradical at temperatures ≤ 1200 K at 1 atm or isomerize to cis-HNCHCH3 when the temperature is higher. To validate the postulated reaction pathways, a pyrolysis experiment of pyrrolidine was conducted in a SiC reactor with a short residence time (40–60 μs) at 1050 K and 0.263 atm. The experimental result confirms the collisional stabilization of H2NCHCH2 and cyc-C2H5N + CH3NCH2. The diradical ·CH2NHCH2· was not readily detectable due to its low concentration, which falls below the detection limit of current analytical techniques, while the stabilization of cis-HNCHCH3 and trans-HNCHCH3 was not sure because of their extremely low photoionization cross section under the studied energy range. The rate constants of the isomerization and decomposition reactions of diradical ·CH2NHCH2· and cyc-C2H5N are provided, which are valuable for developing the mechanism for pyrrolidine and deepening our understanding of the mechanism of N-heterocyclic compounds pyrolysis/combustion.

Read full abstract
  • Combustion and Flame
  • Sep 27, 2023
  • Qifeng Hou + 9
Cite
Save

3+2] Cycloaddition of N-tert-Butyl, -(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation

In this scientific contribution, regio- and diastereo- selectivity of [3+2] cycloaddition (32CA) of N-tert-butyl,α-(4-trifluoromethyl)-phenylnitrone (1) with methacrolein (2) were investigated using DFT method at B3LYP/6-31(d) computational level in gas and dichloromethane solvent. The molecular electrostatic potential MESP was used to show the most active centers in the examined molecules. Global and local reactivity indices as well as thermodynamic parameters have been calculated to explain the regioselectivity and stereoselectivity for the selected reaction. The possible chemoselective ortho/meta regioselectivity and stereo- (endo/exo) isomeric channels were investigated. Our theoretical results give important elucidations for the possible pathways related to the studied 32CA reaction.

Read full abstract
  • Chemistry & Chemical Technology
  • Sep 20, 2023
  • Khaoula Kouchkar + 2
Open Access
Cite
Save

Unexplored Isomerization Pathways of Azobis(benzo-15-crown-5): Computational Studies on a Butterfly Crown Ether.

Computational studies on trans → cis and cis → trans isomerizations of photoresponsive azobis(benzo-15-crown-5) have been reported in this work. The photoexcited ππ* state (S2) of the trans isomer relaxes through the planar S2 minimum and the planar S2/S1 conical intersection (both situated around 9 kcal/mol below the vertically excited S2 state) arising along the N═N stretching coordinate. The nπ* state (S1) of this isomer has both planar and rotated (clockwise and anticlockwise) minima, which may lead to a torsional conical intersection (S0/S1) geometry having a <CNNC dihedral angle value close to 90°. This rotational isomerization path is found to have an energy barrier. It has been noticed that an N-N-out-of-plane motion coupled with the torsion can bring down the barrier and may facilitate the isomerization process. On the other hand, the vertically excited S1 state of the cis-isomer undergoes a barrierless path to reach a torsional conical intersection (S0/S1) geometry (<CNNC = 88°), responsible for the trans-isomer formation. The cis-S2/S1 CI (conical intersection) torsional geometry (<CNNC = 45°) is situated around 16 kcal/mol above the vertically excited ππ* state of the cis-isomer and not reachable on S2 photoexcitation. The two optimized torsional S2 minima of this system are close to the S1 surface and seem to be involved in the S2-S1 internal conversion. A less efficient concerted inversion photoisomerization path through a linear geometry has also been identified. The thermal cis → trans isomerization has been found to undergo an inversion motion, which forms a less stable trans isomer. Possible differences between the isomerization channels of this azobis(benzo-15-crown-5) and the unsubstituted azobenzene system have also been highlighted in the work.

Read full abstract
  • The Journal of Physical Chemistry A
  • Aug 1, 2023
  • Dilawar Singh Sisodiya + 2
Cite
Save

Pyrolysis and kinetic study of dimethyl methylphosphonate (DMMP) by synchrotron photoionization mass spectrometry

Pyrolysis experiments of dimethyl methylphosphonate (DMMP) were carried out in a jet stirred reactor (JSR) coupled to synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) at 1 atm, from 900 to 1200 K, to quantitatively measure the mole fraction profiles of DMMP and its pyrolysis products. Furthermore, theoretical calculations were carried out. Geometry optimization and vibrational frequency analysis were conducted for DMMP unimolecular and isomerization reactions at the MN15/6-311+G(2df,2p) level of theory, and kinetic calculations were performed using the kinetic code of MESS. The results show that DMMP mainly undergoes isomerization channels to form its isomers before decomposing into pyrolysis products. This is different from the DMMP decomposition channels adopted in the literature models. The kinetic model of DMMP in the literature was modified and improved by adding newly calculated reactions and their rate constants and updating the rate constants of unimolecular reactions for DMMP as well based on computations. Some rate tuning of reactions by 5 or 10 factors has been tried in model development to better describe the experimental measurements. Finally, the model developed by this work showed much better prediction of DMMP consumption and major species production than the prediction by literature models. In addition, the updated model was validated against various previous experimental data (CO mole fraction distributions in the shock tube, the flame speed and species mole fraction distributions in the premixed flame), and the satisfactory validation results indicate the reliability of the DMMP model that was improved in this work. This preliminary work laid a foundation to further study the combustion properties and to develop the kinetic model of organophosphorus compounds.

Read full abstract
  • Combustion and Flame
  • Jul 7, 2023
  • Yixuan Jing + 8
Cite
Save

On the Nature of the Partial Covalent Bond between Noble Gas Elements and Noble Metal Atoms

This article provides a discussion on the nature of bonding between noble gases (Ng) and noble metals (M) from a quantum chemical perspective by investigating compounds such as NgMY (Y=CN, O, NO3, SO4, CO3), [NgM-(bipy)]+, NgMCCH, and MCCNgH complexes, where M=Cu, Ag, Au and Ng=Kr-Rn, with some complexes containing the lighter noble gas atoms as well. Despite having very low chemical reactivity, noble gases have been observed to form weak bonds with noble metals such as copper, gold, and silver. In this study, we explore the factors that contribute to this unusual bonding behavior, including the electronic structure of the atoms involved and the geometric configuration of the concerned fragments. We also investigate the metastable nature of the resulting complexes by studying the energetics of their possible dissociation and internal isomerization channels. The noble gas-binding ability of the bare metal cyanides are higher than most of their bromide counterparts, with CuCN and AgCN showing higher affinity than their chloride analogues as well. In contrast, the oxides seem to have lower binding power than their corresponding halides. In the oxide and the bipyridyl complexes, the Ng-binding ability follows the order Au > Cu > Ag. The dissociation energies calculated, considering the zero-point energy correction for possible dissociation channels, increase as we move down the noble gas group. The bond between the noble gases and the noble metals in the complexes are found to have comparable weightage of orbital and electrostatic interactions, suggestive of a partial covalent nature. The same is validated from the topological analysis of electron density.

Read full abstract
  • Molecules
  • Apr 5, 2023
  • Ranita Pal + 1
Open Access
Cite
Save

Revisiting photocyclization of the donor-acceptor stenhouse adduct: missing pieces in the mechanistic jigsaw discovered.

Donor-acceptor Stenhouse adducts (DASA) have recently emerged as a class of visible-light-induced photochromic molecular switches, but their photocyclization mechanism remains puzzling and incomplete. In this work, we carried out MS-CASPT2//SA-CASSCF calculations to reveal the complete mechanism of the dominant channels and possible side reactions. We found that a new thermal-then-photo isomerization channel, i.e., EEZ → EZZ → EZE, other than the commonly accepted EEZ → EEE → EZE channel, is dominant in the initial step. Besides, our calculations rationalized why the expected byproducts ZEZ and ZEE are unobserved and proposed a competitive stepwise channel for the final ring-closure step. The findings here redraw the mechanistic picture of the DASA reaction by better accounting for experimental observations, and more importantly, provide critical physical insight in understanding the interplay between thermal- and photo-induced processes widely present in photochemical synthesis and reactions.

Read full abstract
  • Physical Chemistry Chemical Physics
  • Jan 1, 2023
  • Yazhen Li + 3
Cite
Save

Effect of Intersystem Crossings on the Kinetics of Thermal Ion-Molecule Reactions: Ti+ + O2, CO2, and N2O.

A selected-ion flow tube apparatus has been used to measure rate constants and product branching fractions of 2Ti+ reacting with O2, CO2, and N2O over the range of 200-600 K. Ti+ + O2 proceeds at near the Langevin capture rate constant of 6-7 × 10-10 cm3 s-1 at all temperatures to yield 4TiO+ + O. Reactions initiated on doublet or quartet surfaces are formally spin-allowed; however, the 50% of reactions initiated on sextet surfaces must undergo an intersystem crossing (ISC). Statistical theory is used to calculate the energy and angular momentum dependences of the specific rate constants for the competing isomerization and dissociation channels. This acts as an internal clock on the lifetime to ISC, setting an upper limit on the order of τISC < 1e-11 s. 2Ti+ + CO2 produces 4TiO+ + CO less efficiently, with a rate constant fit as 5.5 ± 1.3 × 10-11 (T/300)-1.1±0.2 cm3 s-1. The reaction is formally spin-prohibited, and statistical modeling shows that ISC, not a submerged transition state, is rate-limiting, occurring with a lifetime on the order of 10-7 s. Ti+ + N2O proceeds at near the capture rate constant. In this case, both Ti+ON2 and Ti+N2O entrance channel complexes are formed and can interconvert over a barrier. The main product is >90% TiO+ + N2, and the remainder is TiN+ + NO. Both channels need to undergo ISC to form ground-state products but TiO+ can be formed in an excited state exothermically. Therefore, kinetic information is obtained only for the TiN+ channel, where ISC occurs with a lifetime on the order of 10-9 s. Statistical modeling indicates that the dipole-preferred Ti+ON2 complex is formed in ∼80% of collisions, and this value is reproduced using a capture model based on the generic ion-dipole + quadrupole long-range potential.

Read full abstract
  • The journal of physical chemistry. A
  • Feb 2, 2022
  • Brendan C Sweeny + 4
Cite
Save

Theoretical study on isomerization, decomposition and ring-closure reaction kinetics of methyl pentanoate radicals

A comprehensive study on the isomerization, decomposition and ring-closure reaction kinetics, as well as thermodynamic properties of methyl pentanoate radicals were carried out in this work. The M06–2X/cc-pVTZ level of theory was employed to optimize geometries and analyze frequencies for all the stationary points on the potential energy surfaces. The CCSD(T) method with two basis sets, cc-pVDZ and cc-pVTZ, was used to calculate single point energies, which were further extrapolated to the complete basis set (CBS) limit to construct the potential energy surfaces. The energy calculation results indicated that isomerization of δ-R to α-R, decomposition of γ-R to CH2C(=O)OCH3 and propene, and ring-closure reaction of δ-R to 1-methoxycyclopentanoxyl radical are the most energetically favored reactions among the studied isomerization, decomposition and ring-closure reaction channels, respectively. High pressure limit, and temperature and pressure dependent rate coefficients were determined by solving the one-dimensional energy-dependent master equations with Tsinghua University Minnesota Master Equation program (TUMME). The rate coefficients and branching ratios were found to be significantly affected by temperature and pressure. The decomposition reactions yielding small unsaturated esters or small ester radicals dominate at high temperatures, while the isomerization reactions proceeding via five- and six-membered ring saddle points, as well as the ring-closure reactions play more important roles at low temperatures. Significant discrepancies are observed between the theoretically calculated rate coefficients and estimated results. The thermochemical properties of methyl pentanoate radicals were calculated using isodesmic reaction method and atomization method together with the multistructural torsional anharmonicity partition functions. This study provides accurate kinetic and thermodynamic data on methyl pentanoate radicals, which are expected to advance our understanding of combustion chemistry of methyl pentanoate and larger methyl esters.

Read full abstract
  • Combustion and Flame
  • Nov 23, 2021
  • Yaozong Duan + 3
Cite
Save

Ab Initio and RRKM/Master Equation Analysis of the Photolysis and Thermal Unimolecular Decomposition of Bromoacetaldehyde

Bromoacetaldehyde (BrCH2CHO) is a major stable brominated organic intermediate of the bromine-ethylene addition reaction during the arctic bromine explosion events. Similar to acetaldehyde, which has been recently identified as a source of organic acids in the troposphere, it may be subjected to photo-tautomerization initially forming brominated vinyl compounds. In this study, we investigate the unimolecular reactions of BrCH2CHO under both photolytic and thermal conditions using high-level quantum chemical calculations and Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation analysis. The unimolecular decomposition of BrCH2CHO takes place through 14 dissociation and isomerization channels along a potential energy surface involving eight wells. Under the assumption of singlet ground-state potential energy surface-dominated photodynamics, the primary photodissociation yields of BrCH2CHO are investigated under both collision-free and collision energy transfer conditions. At atmospheric pressure and under tropospheric actinic flux conditions at ground level, depending on the assumed collisional energy transfer parameter, 150 cm-1 < ⟨ΔEdown⟩ < 450 cm-1, 78-33% of BrCH2CHO undergoes direct photodissociation instead of collisional deactivation at an excitation wavelength of 320 nm. This is significantly higher than the 14% reported for acetaldehyde, hence indicating a strong effect of bromine substitution on the product photolysis yield that is related to additional favorable Br and HBr forming dissociation channels. In contrast to the overall photodissociation quantum yield, the relative branching fractions of the photodissociation products are less dependent on the collisional energy transfer parameter. For a representative value of ⟨ΔEdown⟩ = 300 cm-1 and an excitation wavelength of 320 nm, with 27% for C-C bond fission, 11% for C-Br bond fission, 7% for HBr elimination, and only below 2% each for a consecutive O-Br fission reaction and the photo-tautomerization channel yielding brominated vinyl alcohol, the photodissociation is markedly different from the acetaldehyde case. Finally, as brominated halogenated compounds are of interest for flame inhibition purposes, thermal multichannel unimolecular rate constants were calculated for temperatures in the range from 500 to 2000 K. At a temperature of 2000 K and ambient pressure, the two main reaction channels are the C-Br and C-C bond fissions, contributing 35 and 43% to the total reaction flux, respectively.

Read full abstract
  • The Journal of Physical Chemistry A
  • Sep 9, 2021
  • Ibrahim Sadiek + 2
Cite
Save

A comprehensive study on low-temperature oxidation chemistry of cyclohexane. I. Conformational analysis and theoretical study of first and second oxygen addition

To understand the low-temperature oxidation chemistry of cyclohexane, conformational analysis and theoretical study of the first and second oxygen addition are performed using quantum chemical calculations and kinetic calculations. Pressure- and temperature-dependent rate constants and branching ratios for major reaction channels are determined with RRKM/master-equation simulations over 298–2000 K and 0.01–1000 bar. The theoretical results indicate that the rapid inversion-topomerization processes facilitate fast equilibrium between axial and equatorial conformers. This can greatly counterbalance the influence of initial positions of side-chain groups in ROO, QOOH, cis-OOγQOOH and trans-OOγQOOH conformers. Conformational effects are found to be influential on the chain branching reaction sequences in second oxygen addition. The carbon ring prevents the conventional intramolecular H-transfer of cis-OOγQOOH conformers to yield ketohydroperoxides, as well as the inversion-topomerization from cis-OOγQOOH conformer to trans-OOγQOOH conformers. cis-OOγQOOH conformers mainly undergo alternative isomerization channel (cis-OOγQOOH→γP(OOH)2→alkenylhydroperoxides+OH→oxy radical+OH+OH), while trans-OOγQOOH conformers have both conventional isomerization channel (trans-OOγQOOH→ketohydroperoxides+OH→oxy radical+OH+OH) and alternative isomerization channel (trans-OOγQOOH→γP(OOH)2→alkenylhydroperoxides+OH→oxy radical+OH+OH). Kinetic calculation results also support the application of the thumb rule widely used in acyclic alkane oxidation that the rate constant of QOOH+O2 is roughly half of that of R+O2 in cyclic alkane oxidation, while it is indicated that estimating the rate constants of OOQOOH reactions from similar reactions of ROO may cause significant uncertainties.

Read full abstract
  • Combustion and Flame
  • Aug 21, 2021
  • Jiabiao Zou + 3
Cite
Save

Ultrafast Photoisomerization of N-(2-Methoxybenzylidene)aniline: Nonadiabatic Surface-Hopping Study.

We investigated the ultrafast photoisomerization of N-(2-methoxybenzylidene)aniline in the gas phase excited into the second singlet (S2) state by nonadiabatic surface-hopping dynamics calculations. Two trans isomers (1E and 1E') were taken into consideration in our dynamics simulation. Three conical intersections (CIs) were characterized in the optimization. The CI between S2 and the first singlet (S1) states presents a nearly planar structure, while the other two CIs (CItwist-I and CItwist-II) between S1 and the ground (S0) states show nearly perpendicular geometries. After two trans isomers excited to the S2 state, the torsion of the C-N bond connected the phenyl group and the stretch of the central bridging bond make the molecule reach CIplanar, and the S2/S1 hopping occurs. During the S1-state dynamics, the molecule moves to a S1/S0 CI (CItwist-I or CItwist-II) by the rotation of the central bridging bond. The cis isomer is obtained through a barrierless pathway in the S0 state with the torsion of the three bridging bonds. There is a main channel and an alternative one for the photoisomerization process of both trans isomers. CItwist-I and CItwist-II act as S1/S0 decay funnels in the main isomerization channels of 1E and 1E' isomers, respectively, and the photochemical processes of 1E and 1E' lead to different cis isomers.

Read full abstract
  • The Journal of Physical Chemistry A
  • Aug 12, 2021
  • Aihua Gao + 1
Cite
Save

Coincident angle-resolved state-selective photoelectron spectroscopy of acetylene molecules: a candidate system for time-resolved dynamics.

The acetylene-vinylidene system serves as a benchmark for investigations of ultrafast dynamical processes where the coupling of the electronic and nuclear degrees of freedom provides a fertile playground to explore the femto- and sub-femto-second physics with coherent extreme-ultraviolet (EUV) photon sources both on the table-top as well as free-electron lasers. We focus on detailed investigations of this molecular system in the photon energy range 19-40 eV where EUV pulses can probe the dynamics effectively. We employ photoelectron-photoion coincidence (PEPICO) spectroscopy to uncover hitherto unrevealed aspects of this system. In this work, the role of excited states of the C2H2+ cation, the primary photoion, is specifically addressed. From photoelectron energy spectra and angular distributions, the nature of the dissociation and isomerization channels is discerned. Exploiting the 4π-collection geometry of the velocity map imaging spectrometer, we not only probe pathways where the efficiency of photoionization is inherently high but also perform PEPICO spectroscopy on relatively weak channels.

Read full abstract
  • Faraday Discussions
  • Jan 1, 2021
  • S Mandal + 11
Open Access
Cite
Save

Thermal decomposition and isomerization of furfural and 2-pyrone: a theoretical kinetic study.

We have studied the decomposition and isomerization of furfural in the gas phase using quantum chemical and statistical reaction rate theory techniques. This work uncovers a variety of new reaction channels in furfural pyrolysis that lead to formation of the experimentally observed products, including CO2, which was previously unexplained. In addition to the known mechanism for furan + CO production, furfural is shown to isomerize directly to 2-pyrone, with a barrier height of 69 kcal mol-1, from where it can decompose to vinylketene + CO (highest barrier of 65 kcal mol-1) or to CO2 + 1,3-cyclobutadiene (highest barrier of 66 kcal mol-1). Alternative pathways to vinylketene + CO and 4-pyrone are also described. An RRKM theory/master equation model is developed to describe reactions on the C5O2H4 surface and used to simulate the decomposition kinetics of furfural and 2-pyrone. For both molecules, decomposition at 1400-2100 K is dominated by the formation of furan + CO, which represents around 75% of the total products, compared to around 19% and 6% for vinylketene + CO and total CO2, respectively. The model also predicts significant formation of stabilized 2-pyrone under these conditions. Rate coefficient expressions are reported as a function of both temperature and pressure for the main decomposition and isomerization channels identified in the pyrolysis of furfural and 2-pyrone, to facilitate detailed chemical kinetic modelling of these important oxygenated hydrocarbons.

Read full abstract
  • Physical Chemistry Chemical Physics
  • Jan 1, 2021
  • Saddam Al-Hammadi + 1
Cite
Save

High performance global exploration of isomers and isomerization channels on quantum chemical potential energy surface of H5 C2 NO2.

High performance global exploration of isomers and isomerization channels on the quantum chemical potential energy surface (PES) is performed for H5 C2 NO2 by using the scaled hypersphere search-anharmonic downward distortion following (SHS-ADDF) method. A multi-node operation, NeoGRRM, has achieved high performance exploration calculations for the large system by submitting SHS-ADDF sub-jobs into many cores in parallel and unifying the results of sub-jobs into the total lists of the main-job. Global exploration of equilibrium (EQ) and transition-state structures at the level of B3LYP/6-31G(d) gave 3210 EQs and 23278 TSs. Nine compounds were found in the low energy regions of 0-100 kJ/mol; the lowest energy compound is N-methylcarbamic acid, the second is methyl carbamate, and the third is glycine (the most fundamental amino acid). Interconversion pathways between the conformers of each of the low energy compounds were surveyed. Isomerization channels around glycine were explored in detail. The lowest energy barriers around some of the EQs turned to be negative after zero-point energy corrections. This indicates that those structures cannot exist as independent structures because they spontaneously collapse into more stable structures. The global PES search showed various interesting dissociating channels which indicate synthon reaction pathways in the reverse directions.

Read full abstract
  • Journal of computational chemistry
  • Nov 4, 2020
  • Koichi Ohno + 4
Cite
Save

Insights into the oxidation of propylene oxide through the analysis of experiments and kinetic modeling

Cyclic ethers are important intermediates in the oxidation of hydrocarbons and biofuels. Studying the oxidation and pyrolysis of cyclic ethers will help in improving our understanding of this functional group and provide consistency to the base mechanism where they play an important role. In this aspect, propylene oxide has been investigated in this study by obtaining ignition delay time measurements in the rapid compression machine and shock tube. The experiments were performed in a range of pressures varying from 10 to 40 bar at different equivalence ratios (0.5–2.0) and dilution percentages. Additionally, speciation measurements in the shock tube at pyrolysis conditions have been performed at a pressure of 40 bar to explore the isomerization pathways. A detailed kinetic mechanism was developed to describe both the oxidation and pyrolysis chemistry of propylene oxide. The mechanism is not only able to predict the data obtained from this study but also reproduces the data from the literature in a consistent trend. For a better understanding of the oxidation and pyrolysis chemistry of propylene oxide, the kinetic analyses were performed using the developed mechanism to comprehend the important reaction pathways and sensitive reactions. At the investigated regime, the consumption of propylene oxide through its isomerization channels is the critical pathway that controls the reactivity of the fuel.

Read full abstract
  • Proceedings of the Combustion Institute
  • Sep 28, 2020
  • Ajoy Ramalingam + 3
Cite
Save

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5

Popular topics

  • Latest Artificial Intelligence papers
  • Latest Nursing papers
  • Latest Psychology Research papers
  • Latest Sociology Research papers
  • Latest Business Research papers
  • Latest Marketing Research papers
  • Latest Social Research papers
  • Latest Education Research papers
  • Latest Accounting Research papers
  • Latest Mental Health papers
  • Latest Economics papers
  • Latest Education Research papers
  • Latest Climate Change Research papers
  • Latest Mathematics Research papers

Most cited papers

  • Most cited Artificial Intelligence papers
  • Most cited Nursing papers
  • Most cited Psychology Research papers
  • Most cited Sociology Research papers
  • Most cited Business Research papers
  • Most cited Marketing Research papers
  • Most cited Social Research papers
  • Most cited Education Research papers
  • Most cited Accounting Research papers
  • Most cited Mental Health papers
  • Most cited Economics papers
  • Most cited Education Research papers
  • Most cited Climate Change Research papers
  • Most cited Mathematics Research papers

Latest papers from journals

  • Scientific Reports latest papers
  • PLOS ONE latest papers
  • Journal of Clinical Oncology latest papers
  • Nature Communications latest papers
  • BMC Geriatrics latest papers
  • Science of The Total Environment latest papers
  • Medical Physics latest papers
  • Cureus latest papers
  • Cancer Research latest papers
  • Chemosphere latest papers
  • International Journal of Advanced Research in Science latest papers
  • Communication and Technology latest papers

Latest papers from institutions

  • Latest research from French National Centre for Scientific Research
  • Latest research from Chinese Academy of Sciences
  • Latest research from Harvard University
  • Latest research from University of Toronto
  • Latest research from University of Michigan
  • Latest research from University College London
  • Latest research from Stanford University
  • Latest research from The University of Tokyo
  • Latest research from Johns Hopkins University
  • Latest research from University of Washington
  • Latest research from University of Oxford
  • Latest research from University of Cambridge

Popular Collections

  • Research on Reduced Inequalities
  • Research on No Poverty
  • Research on Gender Equality
  • Research on Peace Justice & Strong Institutions
  • Research on Affordable & Clean Energy
  • Research on Quality Education
  • Research on Clean Water & Sanitation
  • Research on COVID-19
  • Research on Monkeypox
  • Research on Medical Specialties
  • Research on Climate Justice
Discovery logo
FacebookTwitterLinkedinInstagram

Download the FREE App

  • Play store Link
  • App store Link
  • Scan QR code to download FREE App

    Scan to download FREE App

  • Google PlayApp Store
FacebookTwitterTwitterInstagram
  • Universities & Institutions
  • Publishers
  • R Discovery PrimeNew
  • Ask R Discovery
  • Blog
  • Accessibility
  • Topics
  • Journals
  • Open Access Papers
  • Year-wise Publications
  • Recently published papers
  • Pre prints
  • Questions
  • FAQs
  • Contact us
Lead the way for us

Your insights are needed to transform us into a better research content provider for researchers.

Share your feedback here.

FacebookTwitterLinkedinInstagram

Copyright 2024 Cactus Communications. All rights reserved.

Privacy PolicyCookies PolicyTerms of UseCareers