Abstract

Pyrolysis experiments of dimethyl methylphosphonate (DMMP) were carried out in a jet stirred reactor (JSR) coupled to synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) at 1 atm, from 900 to 1200 K, to quantitatively measure the mole fraction profiles of DMMP and its pyrolysis products. Furthermore, theoretical calculations were carried out. Geometry optimization and vibrational frequency analysis were conducted for DMMP unimolecular and isomerization reactions at the MN15/6-311+G(2df,2p) level of theory, and kinetic calculations were performed using the kinetic code of MESS. The results show that DMMP mainly undergoes isomerization channels to form its isomers before decomposing into pyrolysis products. This is different from the DMMP decomposition channels adopted in the literature models. The kinetic model of DMMP in the literature was modified and improved by adding newly calculated reactions and their rate constants and updating the rate constants of unimolecular reactions for DMMP as well based on computations. Some rate tuning of reactions by 5 or 10 factors has been tried in model development to better describe the experimental measurements. Finally, the model developed by this work showed much better prediction of DMMP consumption and major species production than the prediction by literature models. In addition, the updated model was validated against various previous experimental data (CO mole fraction distributions in the shock tube, the flame speed and species mole fraction distributions in the premixed flame), and the satisfactory validation results indicate the reliability of the DMMP model that was improved in this work. This preliminary work laid a foundation to further study the combustion properties and to develop the kinetic model of organophosphorus compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.