Abstract
We investigated the ultrafast photoisomerization of N-(2-methoxybenzylidene)aniline in the gas phase excited into the second singlet (S2) state by nonadiabatic surface-hopping dynamics calculations. Two trans isomers (1E and 1E') were taken into consideration in our dynamics simulation. Three conical intersections (CIs) were characterized in the optimization. The CI between S2 and the first singlet (S1) states presents a nearly planar structure, while the other two CIs (CItwist-I and CItwist-II) between S1 and the ground (S0) states show nearly perpendicular geometries. After two trans isomers excited to the S2 state, the torsion of the C-N bond connected the phenyl group and the stretch of the central bridging bond make the molecule reach CIplanar, and the S2/S1 hopping occurs. During the S1-state dynamics, the molecule moves to a S1/S0 CI (CItwist-I or CItwist-II) by the rotation of the central bridging bond. The cis isomer is obtained through a barrierless pathway in the S0 state with the torsion of the three bridging bonds. There is a main channel and an alternative one for the photoisomerization process of both trans isomers. CItwist-I and CItwist-II act as S1/S0 decay funnels in the main isomerization channels of 1E and 1E' isomers, respectively, and the photochemical processes of 1E and 1E' lead to different cis isomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.