Madagascar hosts a great diversity of bird species. This study focuses on the description of the diversity and prevalence of blood parasites (Haemosporida, trypanosomes and filarioid nematodes) in 131 blood samples of 14 species of Corvoidea, namely vangas (Vangidae), Coracina cinerea (Campephagidae), Dicrurus forficatus (Dicruridae) and Terpsiphone mutata (Monarchidae) found in primary rainforests on Madagascar. Blood parasites were detected using both molecular and microscopic methods. Multiplex PCR was used to detect mixed haemosporidian infections and nested PCR was used to describe a 479 bp fragment of the haemosporidian cytochrome b (cytb) gene. Furthermore, a 770 bp SSU rRNA fragment of trypanosomes, and, for microfilariae, a 690 bp fragment of 28S rRNA, as well as a 770 bp fragment of 28S rRNA, were amplified for identification using nested PCRs. Phylogenetic analyses were carried out for all sequences obtained from all blood parasite taxa. Over half of the samples (54.2%; n = 71) were infected with Haemosporida, whereas only 21.4% (n = 28) were infected with Trypanosoma and 5.3% (n = 7) contained filarioid nematode DNA. Fourteen of 56 blood smears contained some of the above-mentioned parasite taxa. The results corroborate the great diversity of blood parasites in the different bird species studied, especially in vangas. Vangas had the greatest diversity of parasites found, as well as the highest number of multiple infections, which may be due to their morphological diversity and resulting habitat use. Fifteen haemosporidian lineages, seven Trypanosoma and five filarioid nematode isolates were newly discovered in the avian species studied, particularly in the vangas. Members of the other Corvoidea families on Madagascar showed a lower susceptibility for avian haemosporidian parasites than vangas, which could be attributed to possible resistance against those parasites. The study confirmed the host specificity of some Haemosporida and microfilariae; however, it demonstrated that this was not the case for Trypanosoma.
Read full abstract