This work focused on the preparation and investigation of polyurethane (SO-PU)-containing sunflower oil glycerides. By transesterification of sunflower oil with glycerol, we synthesized a glyceride mixture with an equilibrium composition, which was used as a new diol component in polyurethanes in addition to poly(ε-caprolactone)diol (PCLD2000). The structure of the glyceride mixture was characterized by physicochemical methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance spectroscopy (NMR), and size exclusion chromatography (SEC) measurements. The synthesis of polyurethanes was performed in two steps: first the prepolymer with the isocyanate end was synthesized, followed by crosslinking with an additional amount of diisocyanate. For the synthesis of the prepolymer, 4,4'-methylene diphenyl diisocyanate (MDI) or 1,6-hexamethylene diisocyanate (HDI) were used as isocyanate components, while the crosslinking was carried out using an additional amount of MDI or HDI. The obtained SO-PU flexible polymer films were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The so-obtained flexible SO-PU films were proved to be suitable for the preparation of potentially biocompatible and/or biodegradable scaffolds. In addition, the stress versus strain curves for the SO-PU polymers were interpreted in terms of a mechanical model, taking into account the yield and the strain hardening.
Read full abstract