Abstract
A segmented polyurethane elastomer (PU) was synthesized in poly(lactic acid) (PLA) melt by reactive processing. The isocyanate component was anticipated to react with the end-groups of PLA resulting in the formation of block-copolymers. The stoichiometry of the functional groups was optimized in the preliminary experiments. Two different processing methods were compared in the further experiments: conventional mixing of PU with PLA (PLA/PU), and reactive blending (PLA-b-PU). The comparison of the structure and properties of compatibilized reactive blends and conventional physical blends clearly shows the benefits of reactive processing. Coupling resulted in a finer dispersion of the particles in the matrix leading to better mechanical properties in the reactive blend. The successful synthesis of PLA-b-PU block copolymers was confirmed by NMR spectroscopy. The isocyanate component was found to react only with the hydroxyl end-groups of PLA, while the formation of amide and acylurea groups was not detected on the carboxyl end.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.