Abstract

The purpose of this work was to create оrgano-inorganic composites (ONC) of polyurethane containing sodium silicate and Zn-Al layered double hydroxides (LDH). Macrodiisocyanate (MDI) was selected as an organic matrix on the basis of a simple oligoether - oligooxypropylene glycol (OOPG) M w = 1052. In the synthesis of MDI, an isocyanate component was used as toluene diisocyanate (TDI). Molar ratio of OOPG: TDI was 1: 2. The content of isocyanate groups in MDI was ≈ 3.6 % wt. Synthesis of organo-inorganic composites in the form of films was carried out by introducing a Zn-Al solution of LDH into sodium silicate, followed by addition to the reaction mixture of MDI, at constant stirring at room temperature. The compositions were obtained with a ratio of inorganic component to organic as 40:60 parts by weight. It is found that the Zn-Al LDH are not chemically bound to the components of polymeric hybrides and play the role of the filler. X-ray studies have shown that when a modifier is introduced, a homogeneous amorphous system is formed. The study of the physico-mechanical characteristics of the ONC has shown that the introducing of Zn-Al LDH leads to a reduction in the tensile straight, which is accompanied by a simultaneous increase in elongation at break of organic inorganic specimens. An obvious explanation for the changes in the physical and mechanical characteristics of created nanohybrides is that the introduction of Zn-Al LDH leads to a change in the phase interaction of sodium silicate with a polymer matrix, which determines the structure of these composites, and hence mechanical characteristics. An increase in the absorption capacity of the water for obtained composite materials was found. The development of nanomaterials for use as a polyurethane filler is a promising area of research, since these composites can be used as protective coatings for reinforced concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.