The cardinal ligament (CL) is one of the major pelvic ligaments providing structural support to the vagina/cervix/uterus complex. This ligament has been studied mainly with regards to its important function in the treatment of different diseases such as surgical repair for pelvic organ prolapse and radical hysterectomy for cervical cancer. However, the mechanical properties of the CL have not been fully determined, despite the important in vivo supportive role of this ligament within the pelvic floor. To advance our limited knowledge about the elastic and viscoelastic properties of the CL, we conducted three consecutive planar equi-biaxial tests on CL specimens isolated from swine. Specifically, the CL specimens were divided into three groups: specimens in group 1 (n = 7) were loaded equi-biaxially to 1 N, specimens in group 2 (n = 8) were loaded equi-biaxially to 2N, and specimens in group 3 (n = 7) were loaded equi-biaxially to 3N. In each group, the equi-biaxial loads of 1N, 2N, or 3N were applied and kept constant for 1200s three times. The two axial loading directions were selected to be the main in-vivo loading direction of the CL and the direction that is perpendicular to it. Using the digital image correlation (DIC) method, the in-plane Lagrangian strains in these two loading directions were measured throughout the tests. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens in group 1, 2, or 3 when the equi-biaxial load reached 1N, 2N, or 3N, respectively. For specimens in group 1 and 2, no statistical differences were detected in the mean normalized strains (or, equivalently, the increase in strain over time) between the two axial loading directions for each creep test. For specimens in group 3, some differences were noted but, by the end of the 3rd creep test, there were no statistical differences in the mean normalized strains between the two axial loading directions. These findings indicated that the increase in strain over time by the end of the 3rd creep test were comparable along these directions. The greatest mean normalized strain (or, equivalently, the largest increase in strain over time) was measured at the end of the 1st creep test (t=1200s), regardless of the equi-biaxial load magnitude or loading direction. Mean normalized strains during the 2nd and 3rd creep tests (t = 100, 600, and 1200s), along each loading direction, were not statistically different. Isochronal data collected at 1N, 2N, or 3N equi-biaxial loads indicated that the CL may be a nonlinear viscoelastic material. Overall, this experimental study offers new knowledge of the mechanical properties of the CL that can guide the development of better treatment methods such as surgical reconstruction for pelvic organ prolapse and radical hysterectomy for cervical cancer.