Abstract
The evolution of the microstructure of tungsten under electron irradiation and post-irradiation annealing hasbeen modeled using a multiscale approach based on Cluster Dynamics simulations. In these simulations, bothself-interstitials atoms (SIA) and vacancies, carbon atoms isolated or in clusters, are considered. Isochronal annealing has been simulated in carbon free tungsten and tungsten with carbon, focusing on the recovery stages I and II. The carbon atom, single SIA, single vacancy and vacancy clusters with sizes up to four are treated as the mobile pieces. Their diffusivities as well as the energy formation and binding energies are based on the experimental data and ab initio predictions and some of these parameters have been slightly adjusted, without modifying the interaction character, on isochronal annealing experimental data. The both models with assumption on 1D as well as 3D dimensionality of diffusivity of SIA are treated. The advantage of the model with 1D diffusivity of SIA is found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.