Naturally fragmented landscapes are adequate systems for evaluating patterns and mechanisms that determine species distribution without confounding effects of anthropogenic fragmentation and habitat loss. We aimed to evaluate an ant metacommunity's spatiotemporal patterns in montane forest islands amid a grassland-dominated matrix. We assessed these patterns by deconstructing the ant metacommunity into forest-dependent and habitat generalist species. We sampled twice a year (summer and winter) over 2 years (2014 and 2015), using soil and arboreal pitfall traps, in fourteen forest islands (varying in size, shape, and connectivity) in the Espinhaço Range Biosphere Reserve, Brazil. We evaluated the relationship between ant species richness, composition (β-diversity), and predictor variables of forest island structure (canopy cover and understory density) and landscape structure (forest amount, number of forest islands, and shape). We sampled 99 ant species, 66.7% of which were classified as forest-dependent and 33.3% as habitat generalist species. We found that ant β-diversity was higher in space than in time, and that species composition variation in time (temporal β-diversity) differed between ant species groups. Both ant groups responded differently to forest island and landscape structure characteristics. Landscape structure seems to act as a spatial filter and the forest islands' local characteristics as an environmental filter, which jointly determine the local and regional diversity. We demonstrate the importance that forest archipelagos pose to ant metacommunity's structure and dynamics in montane tropical regions. Mountaintop conservation and management strategies must consider the forest island archipelago to maintain the biodiversity and the functioning of these systems.