We first introduce a new class of mappings called Bregman asymptotic pointwise nonexpansive mappings and investigate the existence and the approximation of fixed points of such mappings defined on a nonempty, bounded, closed, and convex subset <i>C</i> of a real Banach space <i >E</i>. Without using the original Opial property of a Banach space <i >E</i>, we prove weak convergence theorems for the sequences produced by generalized Mann and Ishikawa iteration processes for Bregman asymptotic pointwise nonexpansive mappings in a reflexive Banach space <i >E</i>. Our results are applicable in the function spaces <svg style="vertical-align:-0.0pt;width:17.512501px;" id="M1" height="14.45" version="1.1" viewBox="0 0 17.512501 14.45" width="17.512501" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,14.387)"><path id="x1D43F" d="M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z" /></g> <g transform="matrix(.012,-0,0,-.012,9.763,6.225)"><path id="x1D45D" d="M570 304q0 -108 -87 -199q-40 -42 -94.5 -74t-105.5 -43q-41 0 -65 11l-29 -141q-9 -45 -1.5 -58t45.5 -16l26 -2l-5 -29l-241 -10l4 26q51 10 67.5 24t26.5 60l113 520q-54 -20 -89 -41l-7 26q38 28 105 53l11 49q20 25 77 58l8 -7l-17 -77q39 14 102 14q82 0 119 -36
t37 -108zM482 289q0 114 -113 114q-26 0 -66 -7l-70 -327q12 -14 32 -25t39 -11q59 0 118.5 81.5t59.5 174.5z" /></g> </svg>, where <svg style="vertical-align:-3.50804pt;width:74.550003px;" id="M2" height="15.2875" version="1.1" viewBox="0 0 74.550003 15.2875" width="74.550003" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,10.862)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,12.931,10.862)"><path id="x3C" d="M512 -3l-437 233v51l437 233v-58l-378 -200v-2l378 -199v-58z" /></g><g transform="matrix(.017,-0,0,-.017,27.634,10.862)"><use xlink:href="#x1D45D"/></g><g transform="matrix(.017,-0,0,-.017,42.44,10.862)"><use xlink:href="#x3C"/></g><g transform="matrix(.017,-0,0,-.017,57.144,10.862)"><path id="x221E" d="M983 225q0 -112 -67 -174.5t-150 -62.5q-91 0 -154.5 43.5t-113.5 129.5q-49 -85 -104 -129t-138 -44q-98 0 -158.5 66t-60.5 154q0 59 21 106.5t54.5 75.5t70.5 43t73 15q90 0 152.5 -43.5t112.5 -128.5q48 84 104.5 128t140.5 44q93 0 155 -65t62 -158zM478 196
q-27 49 -47 80t-50 67t-64 54t-73 18q-48 0 -81.5 -47t-33.5 -128q0 -96 37.5 -157.5t99.5 -61.5q68 0 117.5 47t94.5 128zM889 204q0 91 -35.5 151t-99.5 60q-68 0 -119 -47t-95 -127q27 -49 47 -80.5t50 -67.5t65 -54t74 -18q113 0 113 183z" /></g> </svg> is a real number.
Read full abstract