PurposeSoluble epoxide hydrolase inhibitors (sEHIs) had been demonstrated to produce cardioprotective effects against ischemia-induced lethal arrhythmias, but the exact mechanisms remain unknown. The present study was designed to investigate whether the beneficial effects of sEHIs are related to regulation of microRNA-1, which was a proarrhythmic factor in the ischemic heart.MethodsA mousemyocardial infarction (MI) model was established by ligating the coronary artery. sEHI t-AUCB (0.2, 1, 5 mg/L in drinking-water) was administered daily seven days before MI. The incidence of arrhythmias was assessed by in vivo electrophysiologic studies. miR-1, KCNJ2 (encoding the K+ channel subunit Kir2.1), and GJA1 (encoding connexin 43 [Cx43]) mRNA were measured by real-time PCR; Kir2.1 and Cx43 protein were assessed by western blotting and immunohistochemistry.ResultsWe demonstrated that sEHIs reduced the myocardium infarct size and incidence of inducible arrhythmias in MI mice. Up-regulation of miR-1 and down-regulation of KCNJ2/Kir2.1 and GJA1/Cx43 mRNA/protein were observed in ischemic myocaridum, whereas administration of sEHIs produced an opposite effect. In addition, miR-1 overexpression inhibited expression of the target mRNA and their corresponding proteins, whereas t-AUCB reversed the effects. Our results further revealed that PI3K/Akt signaling pathway might participate in the negatively regulation of miR-1 by sEHi.ConclusionsWe conclude that sEHIs can repress miR-1, thus stimulate expression of KCNJ2/Kir2.1 and GJA1/Cx43 mRNA/protein in MI mice, suggesting a possible mechanism for its potential therapeutic application in ischemic arrhythmias.
Read full abstract