Antibiotic resistance has received widespread attention in recent years. Soil irrigation and fertilization are routine agricultural practices, but also lead to the spread of antibiotic resistance genes (ARGs) in soil-crop system such as via resistome coalescence. Despite community coalescence being ubiquitous and important in natural ecosystems, little research has been done to investigate resistome coalescence during soil irrigation activities. In this study, the characteristics of antibiotic resistome and community coalescence in the soils irrigated with different irrigation materials (wastewater, wastewater-river water, and wastewater-manure) have been revealed by utilizing microcosm experiments and high-throughput sequencing-based metagenomic assembly approaches. Results showed irrigation and coalescence changed soil quality and resistome. Totally, 789 unique ARGs were identified in the irrigation system, including some emerging ARGs. The abundance and diversity of ARGs increased in the coalesced soils, mainly due to the newly imported ARGs from irrigation materials. Relatively, the soils irrigated with wastewater and manure showed higher level of ARGs. Irrigation with the mixtures containing river water caused greater loss of indigenous taxa, while the community structure of mixing treatment with manure changed more dramatically. Interestingly, the succession of community in coalesced soils was influenced by transient competition for resources and ecological niche width, and the highest abundance and diversity of microorganisms and ARGs were found in the initial phase of coalescence, followed by a gradual succession towards the original community. With increasement of wastewater in the irrigation materials, the soil community showed a stepwise change rather than linear change. Notably, natural deposit of irrigation materials reduced their impacts on the ARGs in the coalesced soils. Findings provide new insights into the resistome coalescence during agricultural practices for reducing the spread risks of ARGs.
Read full abstract