Selectively maintaining information is an essential function of visual working memory (VWM). Recent VWM studies have mainly focused on selective maintenance of objects, leaving the mechanisms of selectively maintaining an object's feature in VWM unknown. Based on the interactive model of perception and VWM, we hypothesized that there are distinct selective maintenance mechanisms for objects containing fine-grained features versus objects containing highly discriminable features. To test this hypothesis, we first required participants to memorize a dual-feature object (colored simple shapes vs. colored polygons), and informed them about the target feature via a retro-cue. Then a visual search task was added to examine the fate of the irrelevant feature. The selective maintenance of an object's feature predicted that the irrelevant feature should be removed from the active state of VWM and should not capture attention when presented as a distractor in the visual search task. We found that irrelevant simple shapes impaired performance in the visual search task (Experiment 1). However, irrelevant polygons did not affect visual search performance (Experiment 2), and this could not be explained by decay of polygons (Experiment 3) or by polygons not capturing attention (Experiment 4). These findings suggest that VWM adopts dissociable mechanisms to selectively maintain an object's feature, depending on the feature's perceptual characteristics.
Read full abstract