Abstract

Convolutional neural networks (CNNs) have made significant progress in the field of facial expression recognition (FER). However, due to challenges such as occlusion, lighting variations, and changes in head pose, facial expression recognition in real-world environments remains highly challenging. At the same time, methods solely based on CNN heavily rely on local spatial features, lack global information, and struggle to balance the relationship between computational complexity and recognition accuracy. Consequently, the CNN-based models still fall short in their ability to address FER adequately. To address these issues, we propose a lightweight facial expression recognition method based on a hybrid vision transformer. This method captures multi-scale facial features through an improved attention module, achieving richer feature integration, enhancing the network's perception of key facial expression regions, and improving feature extraction capabilities. Additionally, to further enhance the model's performance, we have designed the patch dropping (PD) module. This module aims to emulate the attention allocation mechanism of the human visual system for local features, guiding the network to focus on the most discriminative features, reducing the influence of irrelevant features, and intuitively lowering computational costs. Extensive experiments demonstrate that our approach significantly outperforms other methods, achieving an accuracy of 86.51% on RAF-DB and nearly 70% on FER2013, with a model size of only 3.64 MB. These results demonstrate that our method provides a new perspective for the field of facial expression recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.