The 1,4-diaryl-1-azabuta-1,3-diene-catalyzed complexation of cyclohexa-1,3-diene with either nonacarbonyldiiron or pentacarbonyliron is reported to provide high yields of the tricarbonyl(η4-cyclohexa-1,3-diene)iron complex. This procedure enables exploitation of both tricarbonyliron fragments of nonacarbonyldiiron for the complexation of dienes for the first time. Using 12.5 mol % of 1-(4-methoxyphenyl)-4-phenyl-1-azabuta-1,3-diene and optimized reaction conditions (nonacarbonyldiiron, dimethoxyethane, reflux, 16.5 h, or pentacarbonyliron, dioxane, reflux, 45 h), a quantitative catalytic complexation of cyclohexa-1,3-diene is feasible with both reagents. An extensive study with a broad range of 1,4-diaryl-1-azabuta-1,3-dienes shows that the efficiency of the catalysts strongly depends on the substituents of the two aryl rings. Remarkably high activities are found for those catalysts deriving from condensation of cinnamaldehyde and ortho-methoxy-substituted arylamines. A hexacarbonyldiiron complex of 1-(4-methoxyphenyl)-4-phenyl-1-azabuta-1,3-diene is obtained as a byproduct of the catalytic complexation and is structurally confirmed by X-ray crystallography. A mechanism supported by the experimental findings is proposed.