The ability of mononuclear non-heme iron complexes to function as molecular oxygen transporters is investigated by density functional theory. The factors governing the efficiency of the reversible binding of dioxygen at the active site of the dinuclear non-heme iron enzyme hemerythrin, including antiferromagnetic coupling and the conversion of dioxygen to hydroperoxo by a proton coupled 2-electron transfer mechanism, are revisited and considered as possible tools in mononuclear non-heme complexes. Several mononuclear non-heme model complexes, including active sites of enzymes already known to interact with dioxgenic ligands, are constructed and the molecular oxygen transportation capabilities of these complexes are examined computationally. The high-spin nature of the ground state of these complexes implies an intrinsic kinetic lability of the oxy structures, as also evident from potential energy surface calculations towards iron-dioxygen cleavage. Proton affinities as calibrated with reference compounds showed that these complexes are highly unlikely to undergo protonation to form hydroperoxo-like adducts. Mixed superoxo descriptions of the dissociated dioxygenic ligands in all complexes add to the overall conclusion that these model structures are significantly disadvantaged in any attempt to be employed for molecular oxygen transportation.
Read full abstract