We investigated the effects of vitamin D3 on the signaling pathways by prostaglandin E2 (PGE2) in osteoblast-like MC3T3-E1 cells. The pretreatment with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, significantly inhibited cAMP accumulation induced by 10 microM PGE2 in a dose-dependent manner in the range between 1 pM and 1 nM. This effect of 1,25-(OH)2D3 was dependent on the time of pretreatment up to 8h. 1,25-(OH)2D3 also inhibited the cAMP accumulation induced by NaF, a GTP-binding protein activator, or forskolin which directly activates adenylate cyclase. On the other hand, 1,25-(OH)2D3 significantly inhibited PGE2-induced IP3 formation in a dose-dependent manner between 10 pM and 1 nM. However, 1,25-(OH)2D3 had little effect on NaF-induced IP3 formation. The pretreatment with 24,25-dihydroxyvitamin D3, an inactive form of vitamin D3, affected neither cAMP accumulation nor IP3 formation induced by PGE2. These results strongly suggest that 1,25-(OH)2D3 modulates the signaling by PGE2 in osteoblast-like cells as follows: the inhibitory effect on the cAMP production is exerted at a point downstream from adenylate cyclase and the inhibitory effect on the phosphoinositide hydrolysis is exerted at the point between the PGE2 receptor and GTP-binding protein, probably Gi2.
Read full abstract