Abstract

The effect of short-term (15 days) and long-term (60 days) ethanol treatment and withdrawal on agonist-stimulated phosphoinositide (Pl) hydrolysis, serotonin receptor subtypes (5HT1A and 5HT2), and alpha 1-adrenergic receptors were studied in rat cerebral cortex. Short-term ethanol treatment had no significant effect on serotonin (5HT), norepinephrine (NE), and calcium ionophore (A23187)-stimulated [3H]-inositol-1-phosphate ([3H]-IP1) formation and 5-HT2 receptors as measured by 125I-lysergic acid diethylamide (125I-LSD) binding, in rat cerebral cortex. However, 15 days of ethanol treatment, followed by 24 hr of withdrawal resulted in a decrease in Bmax of 125I-LSD binding without significant change in KD, as well as a decrease in 5HT-stimulated [3H]-IP1 formation in rat cerebral cortex. 5HT1A and alpha 1-adrenergic receptors were determined by using [3H]-8-hydroxy-2-(di-N-propylamino)tetralin and [3H]-prazosin as radioligand, respectively. We also observed that long-term ethanol treatment had no significant effect on Bmax and KD of 5HT2, 5HT1A, and alpha 1-adrenergic receptors, as well as NE and A23187-stimulated [3H]-IP1 formation, but significantly decreased the 5HT-stimulated [3H]-IP1 formation in rat cerebral cortex. It is possible that a decrease in 5HT-induced PI turnover after long-term ethanol exposure may be due to a decrease in coupling of 5HT2 receptors to G protein or PLC enzyme, whereas the decrease in 5HT-induced PI turnover after withdrawal may be due to a decrease in functional 5HT2 receptor number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call