Dynamic ion-recoil mixing of near-film-surface atomic layers is commonly used to increase the metastable solubility limit xmax in otherwise immiscible thin film systems during physical vapor deposition. Recently, Al subplantation achieved by irradiating the film growth surface with Al+ metal-ion flux was shown to result in an unprecedented xmax for VAlN, far above values obtained with gas ion irradiation. However, it is reasonable to assume that ion irradiation necessary for subplantation also leads to a compressive stress σ buildup. In order to separate the effects of Al+ bombardment on σ and xmax, and realize low-stress high-xmax nitride alloys, we grow metastable cubic V1-xAlxN (0.17 ≤ x ≤ 0.74) films using reactive magnetron sputtering under different ion irradiation conditions. Al and V targets are operated in Ar/N2 discharges employing (i) conventional DC (Ar+, N2+), (ii) hybrid High-power pulsed magnetron sputtering (HIPIMS)/DC processing with one type of metal ion present (Al+ or V+/V2+), and (iii) HIPIMS with concurrent Al+ and V+/V2+ fluxes. Comparison to the ab initio calculated Al solubility limit reveals that xmax = 0.55 achieved with V+/V2+ irradiation is entirely accountable for by stress. In contrast, Al+ fluxes provide a substantial increase in xmax to 0.63, which is 12% higher than that expected based on the stress-induced increase in metastable solubility. Correlative stress and atom probe tomography data confirm that the metastable Al solubility enhancement is enabled by Al+ subplantation. The here proposed processing strategy allows for growth of single-phase cubic nitride alloys with significantly increased Al concentrations embodying tremendous promise for substantial improvements in high temperature oxidation resistance and mitigates the risk of stress-induced adhesive or cohesive coating failure.
Read full abstract