Focused ion beam (FIB) sample preparation for electron microscopy often requires large volumes of materials to be removed. Prior efforts to increase the rate of bulk material removal were mainly focused on increasing the primary ion beam current. Enhanced yield of etching at glancing ion beam incidence is known but has not found widespread use in practical applications. In this study, etching at glancing ion beam incidence was explored for its advantages in increasing the rate of bulk material removal. Anomalous enhancement of material removal at glancing angles of ion beam incidence was observed with single-raster etching in along-the-slope direction with toward-FIB direction of raster propagation. Material removal was inhibited in an away-from-FIB direction of raster propagation. The effects of glancing angles and ion doses on depth of cut and volume of removed materials were also recorded. We demonstrated that the combination of single-raster FIB etching at glancing incidence in along-the-slope direction with toward-FIB raster propagation and a “staircase” type of etching strategy holds promise for reducing the processing time for bulk material removal in FIB sample preparation applications.