Repetitive control (RC), which can track any periodic signal with a known integer period with zero steady-state error, is widely used for current control of grid-tied inverters in microgrids. However, the inherent one fundamental period time delay, leads to poor dynamic performance. Furthermore, the performance of conventional RC (CRC) will degrade when operating at a high variation grid frequency. Therefore, this paper proposes a frequency adaptive improved RC (FA-IRC) for grid-tied inverters. The improved RC (IRC) consists of a repetitive controller with a modified internal model filter, plus a proportional controller. In comparison to the CRC, the IRC has a good dynamic response, because it provides a higher gain and a wider bandwidth at the resonant frequency. Moreover, to achieve the frequency adaptability of the IRC, a fractional delay, based on a finite impulse response (FIR) filter, is built into the IRC system, to ensure that the resonant frequency of the IRC is approximately equal to the actual grid frequency and harmonic frequency. Stability analysis and characteristic analysis of the FA-IRC system are reported in this paper. Simulations are conducted, to demonstrate the validity of the proposed method.
Read full abstract