Abstract

The wide use of inverters in microgrids motivates the development of digital controllers with sampling systems. This paper proposes a multi-rate sampling frequency and voltage regulation method for inverters-based distributed generators (DGs). The fast-sampling signals are adopted to achieve the primary control, which is composed of the VSG-based frequency control and the voltage droop control with a low-pass filter (LPF). Based on the unified primary control model, the low-sampling distributed model predictive control (DMPC) is proposed as secondary frequency and voltage control. Considering the microgrid network, the inverter-based DGs supply power for both the local load and loads on other buses. The proposed DMPC method can overcome the disproportionate impedances of interconnecting lines among buses. Then the frequency and voltage of islanded microgrid can be restored to rated values with accurate power sharing. The DMPC-based secondary control and the primary control have different sampling rates. The stability and dynamic performance of the proposed multi-rate sampling control system are investigated for the first time. Finally, both simulation and experiment tests are carried out to validate the effectiveness of the proposed control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.