Chirp sub-bottom profilers (SBP) provide centi-to-decimetre resolution, seismic data with applications for various geophysical and geological purposes. To verify the field application of imaging of a buried target with a cost-effective and easy-to-apply pseudo-3D Chirp SBP survey, we explored the buried site of an ancient wooden shipwreck off the west coast of Korea before underwater excavations. The survey was conducted using a commercial 2D Chirp SBP system with a newly devised recording system that preserved the true polarity of the chirp signal. To produce high-resolution 3D Chirp SBP data from 2D Chirp SBP datasets recorded by the novel system, an optimal data processing sequence, consisting of a first phase of 2D data processing and a second phase of 3D data processing was designed. The first, 2D phase, included the estimation of a source sweep signature, cross-correlation, and deconvolution using an inverse filter. The resulting resolution of the 2D Chirp SBP data was better than that of the enveloped data provided by the commercial acquisition system. The second phase of 3D data processing included gathering 3D datasets, redistributing of ping positions, and static correction. To improve the consistency of the seismic events and reduce the repetitive corrections (swell, tidal, tie, and residual corrections), a static correction was based on multi-beam echo sounder data. The amplitude variation near the shipwreck was clearly apparent in the time slice from the final pseudo-3D Chirp SBP dataset with a bin size of 2.0 m (crossline) × 0.6 m (inline). Through 3D rendering, the buried ancient shipwreck with dimensions of 5 m (width) × 12 m (length) × 2 m (depth) was imaged successfully.
Read full abstract