Abstract

In this paper, we propose a new adaptive filtering algorithm for system identification. The algorithm is based on the recursive inverse (RI) adaptive algorithm which suffers from low convergence rates in some applications; i.e., the eigenvalue spread of the autocorrelation matrix is relatively high. The proposed algorithm applies discrete-wavelet transform (DWT) to the input signal which, in turn, helps to overcome the low convergence rate of the RI algorithm with relatively small step-size(s). Different scenarios has been investigated in different noise environments in system identification setting. Experiments demonstrate the advantages of the proposed DWT recursive inverse (DWT-RI) filter in terms of convergence rate and mean-square-error (MSE) compared to the RI, discrete cosine transform LMS (DCTLMS), discrete-wavelet transform LMS (DWT-LMS) and recursive-least-squares (RLS) algorithms under same conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.