Authentication is considered one of the most critical technologies for the next generation of the Internet of Medical Things (IoMT) due to its ability to significantly improve the security of sensors. However, higher frequency cyber-attacks and more intrusion methods significantly increase the security risks of IoMT sensor devices, resulting in more and more patients’ privacy being threatened. Different from traditional IoT devices, sensors are generally considered to be based on low-cost hardware designs with limited storage resources; thus, authentication techniques for IoMT scenarios might not be applicable anymore. In this paper, we propose an efficient three-factor cluster-based user authentication protocol (3ECAP). Specifically, we establish the security association between the user and the sensor cluster through fine-grained access control based on Merkle, which perfectly achieves the segmentation of permission. We then demonstrate that 3ECAP can address the privilege escalation attack caused by permission segmentation. Moreover, we further analyze the security performance and communication cost using formal and non-formal security analysis, Proverif, and NS3. Simulation results demonstrated the robustness of 3ECAP against various cyber-attacks and its applicability in an IoMT environment with limited storage resources.
Read full abstract