Abstract
The characterization of thin films containing nanopores with diameters exceeding 50 nm poses significant challenges, especially when deploying sorption-based techniques. Conventional volumetric physisorption or mercury intrusion methods have limited applicability in thin films due to constraints in sample preparation and nondestructive testing. In this context, ellipsometric porosimetry represents a viable alternative, leveraging its optical sensitivity to thin films. With existing setups relying on the capillary condensation of volatile compounds such as water, applicability is typically restricted to pore dimensions <50 nm. In this study, we introduce two high-molar-mass hydrocarbon adsorptives, namely ethylbenzene and n-nonane. These adsorptives exhibit substantial potential in improving the accuracy of physisorption measurements beyond mesoporosity (i.e., >50 nm). Specifically, with n-nonane, applicability is extended up to 80 nm pores. Our measurement guidelines propose a nondestructive, expeditious (<60 min), low-pressure (<0.03 bar) approach to investigate nanoporous thin films with potential adaptability to diverse structural architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.