Besides their structure, dynamics is pivotal for protein functions, particularly for intrinsically disordered proteins (IDPs) that do not fold into a fixed 3D structure. However, the detection of protein dynamics is difficult for IDPs and other disordered biomolecules. NMR spin relaxation rates are sensitive to the rapid rotations of chemical bonds, but their interpretation is arduous for IDPs or molecular assemblies with a complex dynamic landscape. Here we demonstrate numerically that the dynamics of a wide range of proteins, from short peptides to partially disordered proteins and peptides in micelles, can be characterized by calculating the total effective correlation times of protein backbone N-H bond rotations, τeff, from experimentally measured transverse 15N spin relaxation rates, R2, using a linear relation. Our results enable the determination of magnetic-field-independent and intuitively understandable parameters describing protein dynamics at different regions of the sequence directly from experiments. A practical advance of the approach is demonstrated by analyzing partially disordered proteins in which rotations of disordered regions occur with timescales of 1-2 ns, independent of their size, suggesting that rotations of disordered and folded regions are uncoupled in these proteins.
Read full abstract