The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations. Here the conformational dynamics of IDPs and the correlations therein are analyzed, using µs-scale atomistic molecular dynamics (MD) simulations and single-molecule Förster resonance energy transfer (smFRET) experiments. The existence of typical scale-free spatio-temporal correlations in IDP conformational fluctuations is demonstrated. Their conformational evolutions exhibit "1/f noise" power spectra and are accompanied by the appearance of residue domains following a power-law size distribution. Additionally, the motions of residues present scale-free behavioral correlation. These scale-free correlations resemble those in physical systems near critical points, suggesting that IDPs are poised at a critical state. Therefore, IDPs can effectively respond to finite differences in sequence compositions and engender considerable structural heterogeneity which is beneficial for IDP interactions and phase formation.
Read full abstract