Two series of compounds, 9-X-1,7-(Me(2)S)(2)B(12)H(9) and 9,10-X(2)-1,7-(Me(2)S)(2)B(12)H(8) (X = Cl, Br, I), have been synthesized from reactions of 1,7-(Me(2)S)(2)B(12)H(10) with various halogenating reagents. In addition, reactions of 1,7-(Me(2)S)(2)B(12)H(10) with 2,4-(NO(2))(2)C(6)H(3)SCl and PhSeBr resulted in 9-(2',4'-(NO(2))(2)C(6)H(3)S)-1,7-(Me(2)S)(2)B(12)H(9) and 9,10-(PhSe)(2)-1,7-(Me(2)S)(2)B(12)H(8), respectively. X-ray studies of the dibromo, monoiodo, and aryl thioether derivatives show that electrophilic substitution in 1,7-(Me(2)S)(2)B(12)H(10) takes place at positions 9 and 10, as in the case of the meta-carborane 1,7-C(2)B(10)H(12). From 1,12-(Me(2)S)(2)B(12)H(10) the halides 2-X-1,12-(Me(2)S)(2)B(12)H(9) (X = Br, I) were prepared. For both 1,7- and 1,12-(Me(2)S)(2)B(12)H(10) the best iodination results were obtained using iodine monochloride in refluxing acetonitrile. In the presence of 5 mol % (PPh(3))(2)PdCl(2) the iodides 9-I-1,7-(Me(2)S)(2)B(12)H(9), 2-I-1,12-(Me(2)S)(2)B(12)H(9), and 9,10-I(2)-1,7-(Me(2)S)(2)B(12)H(8) react with RMgX (R = Me, Ph, Bn; X = Cl, Br) in THF to yield the corresponding B-alkyl- and B-aryl-substituted products in good yields without using CuI as a cocatalyst. The bromo derivative 9-Br-1,7-(Me(2)S)(2)B(12)H(9) did not react under similar conditions. No interference from the nearby Me(2)S substituent was observed in palladium-catalyzed substitution of iodide in 2-I-1,12-(Me(2)S)(2)B(12)H(9). Presumably due to the intramolecular activation of an aryl C-H bond of the benzyl substituent in the intermediate palladium complex, the yield of 9,10-Bn(2)-1,7-(Me(2)S)(2)B(12)H(8) was significantly lower than those of the dimethyl and diphenyl derivatives. The molecular structures of 9-R-1,7-(Me(2)S)(2)B(12)H(9) (R = Ph, Bn) and 2-Bn-1,12-(Me(2)S)(2)B(12)H(9) were obtained by single-crystal X-ray analysis.